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A BSTRACT

The "von .eumann bottleneck" imposes severe limitations

on programming languages. This thesis points out that

although the hardware limitations imposed ty this bottlenecK

are being overcome, its constraints will remain in programs

as long as there are assignment statements in their code.

We assert that functional programming languajes allok us to

harness the processing power of computers with hundre4s or

even thousand3 of processors, and also allow is to solve

problems whicd are time/cost prohibitive on a uniprocessor.

We discuss a mechanical method for transforning impera-

tive programs into functional programs. We feel that the

mecnanical transformation process is very inexpensive, and

that it might be the best way to make imperative "library"

programs into functional ones whi:n are well suited to

concurrent processing.
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I. HISTORY AND INTRODUCTION

The vor. geumann architecture was a brilliant break-

through in the development of compaters. Through this lesign

computing mazhines achieved an execation speed and power

which was foreseen only by men of gret vision.

Unfortunately, word-at-a-time processinj, whicn is ixplicit

ir this architecture, has become a limiting fictor in the

advancement of machine speed.

The so-Lalled Von Neumann bottleneck can be overcone im

computer architecture. Indeed, tnere are many acchitectures

which ewplcy a variety f techniques to circumvent thac

bottleneck, by using multiple buses along with mutipl

central processing units (CPUs). For many decides, conrer-

cial computers have been structured to handle information

sequentially. Now, scieatists are trying to replace thl

large computer, based on serial instructions, with networks

of small computers linked in a way that would enible them to

work on diffecent parts of a problem concurrently [Ref. 1].

Many experts forecast that Japan's fifth generation computer

systems will make the Smithsonian Institute the only appro-

priate place in which to house vop Neumann machines. These

new computers virtually eliminate von Neumann bottlenecks

[Ref. 2].

Not so obvious is the fact that the von Neumann bottle-

neck has become manifest not only in computer acchitecture,

but in the languages which were designed with these machines

in mind. Since the dev-loiment of Fortran ia the early

1950's, high-level programming languages have been based in

large part on the instruction sets of thir "target

machines". Fortran was a very efficient language, ax. it

achieved that efficiency because its optimizer was developed

9



with the instruction set of the 15,1 7D1 in the forefront of

the designer's mind [Ref. 3: p.33]. Since that time, the

von Neumann oottleneck has firmly establisnal itself in

every imperative programming languaje. The bottleneck is

manifestEd in the form of assignment state-lents [Ref. 4].

Ve thus fin3 ourselves in a situation where t a hig:a-level

languages wc ordinarily use are not :ipable of taking davan-

tage of the camputir. power of state-of-the-art nachines. !t

seems obvious that computing power which cannot :e harnesse,

is not of much value to us. hat can de do about that? -his

is the cuestion which provided the motivitio2 foC tiS

thes is.

Since high-level languages have zeen to a very great

extent designed with the instruction sets of their target

4 maciines in nir i, there are limitations built into the

structure of the languages which will be very ifficult to

overcome. I will spend some time focusing on thL weaknesses

of the imperative languages. I oild Like to say at the

outset, however, that I in no way mean to imply that impera-

tive languages are not extremely useful in maiy ap plica-

tions. The limitations on which I will primarilv focis will

be in terms of imperative languages as applied to concurrent
pracessinq.

Similarly, I will discuss functional programming

languages. I believe that they provide some relLef from the

von Neumann bottleneck that cannot be achieved by working

4 within the framework of imperative languages. Put another
way, I believe that funtional programming laaguages will

enable the user to take alvantage of the power afforded by

these new multiprocessor machines in a way that imperative

4 languages simply cannot. Indeed there are technicues which

can be employed which will extend the "concurrent processing

power" of imperative languages, but these techniques will

never manifest all the advantages that functional languages

afford, such as evaluation order independence.

10



There are tezhniques available which allow for impera-

tive programs to be translated into functional oies (Ref. 5:

pp.136-1 4 9]. I will demonstrate on of these tachnLi-ues on

a widely used imperative program: the Shell sort. it should

be noted, however, that functional programs also have their

limitations; but these limitations seem to apply to areas

other than the concurrent processing issue.

Aside frm the fact that multiprocessor iardware is

bezomin available, there is another important reason for

wanting to develop and exploit the properties of functional

programaing languages which enhance zoncurrent processing.

-esearci condacted for NASA by an independent cesearch

[Ref. 6] discasses a whole class of problems that are today

too com.utationally complex to be accompished 13 ing conver.-

tional computer resources. For example the linear static

analysis of in undersea oil platform was condacted usin]

fiaite-element structural analysis. The problem had over

720,000 degrees of freedom, and took about :ne week of

processing time on a Univac 1110 computer (Ref. 5: pp. 7-83.

The same authors point out that in the data-flow machine

operators "fire" as soon as their aperands ac.? availatle.

This is exactly how functional programs work: a function

"fires" as soon as all of its parameters are available!

Although programs expressed in sequential lanjuages have

been successfal at expressing parallelism to some degree,

they do not appear to have the potential of detecting paral-

lelism of a high degree (100 or more processors) [Ref. 6:

p.20].

As seems so often to be the case in compater science

issues, no one technique will serve is a panacea. Functional

programming is no exception. Rather, it provides the user

with a great number of advantages, particularly in the area

of concurrent processing. These must be weighed against the

disadvantages, and a decision can then be made )ased on the

11
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specific application for which the program is intended.

hope that this paper will help providie the tackground for

that decision-making process.

0~

0
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II. IMPMATIVE LANGUAGES: STRENGTHS AND LIMIrATIONS

A. CONVERSATIONS WITH MACHINES

Computers , if properly directed, have ttia abilitv to

execute a great many instructioLs in a relatively short

period of time. Yet in order to harness this zomputational

power, one must be able to communicate with the computer,

and give it some "marching orders". For quite some time,

the only way in which to effectively communicate with

computing macaines was to use the machine's native lar.-udge

(cleverly dubbed "machine lang-uage"). Indeed, many peole

learned to use machine language very well, ani some even

began to like it!!! To most people, however, talking to a

machine was juite a str__n. concept. Talking using a

alphabet consisting of only zeros and ones was even more

bizarre! There seemed to be two canps which dezeloped from

this "language problem". Jne camp lived for computers. They

were convinced that the future of the world belonged to

those whc could "speak" machine language, ani spared no

effort in becoming friends with their inanimate associates.

The other camp was at the same time enamored with, skeptical

of, and intimidated by these new machines. These people

swore that the slide rule would never be replacel, and that

the computers were more trouble than they were worth.

To some extent, both camps were right. Computers

certainly do have the the ability to complete tedious,

boring tasks very quickly and very accurately. Even today,

however, it seems that it can sometimes be more trouble than

it is worth t3 get the machine to do what we want. In fact,

sometimes it seems that we are working for the computer,

instead of the computer serving us as it should be. The

13
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development of high-level languages was undertaken in large

part to narrow the gap between tae two camps described

above.

B. ADVANTAGES OF HIGH-LEVEL LANGUAGES

The fundamental purpose of high-level langiages is t:

provide people with a more natural way to com.manicate with

machines. Hig h-level lanjuages eaable people t: raise t:eir

communications to a higher level of aistraction, dn. to cell

on an i.terpreter or compiler to translate t,_ir 'ro ram

into machine language. When davelopin; i hiai-lkvel

language, it is important to ask the iuestion, "For -o:

should the programming language De designed, anywai?" 0:

course, the answer is that it should serve its (a uman) user.

e As obvious as that seems, there are still 3 great zany

instances when that principle is not at the fore~ront of trnz

designer's mind, and the user ends up "working" for the

machine to some extent. C.A.R. Hoare has ne~er sto~pped

preaching the need to keep the human user ia mind when

dealing in programming language design [Ref. 7] [Ref. 8].

High-level laaguages should be kept as simple as possible.

Each extra "feature" added to a language is on. more thing

that the user has to learn. In order to justify the inclu-

sion of a feature in a language, the contribution that it

% makes should overwhelmingly outweigh the complexity it adds

to the language.

6 High-level languages bridge the gap between natural

(human) languages and mazhine languages. In the best case,

therefore, programming languages should be the same as

natural languages. According to Winograd (Ref. 9] the ulti-

6 mate programming language would be one in which the

programmer writes only the comments, dnd the programming

environment wuld take it from there. In other words, the

q 14



user would Le able to use a ratural (spoken) laa.guage, and

the system dould take :are of converting taat to the

language of the target machine.

Although this goal seems unachieveatle, it is certaiil'

something for which we shoald strive. .e should make Every

effort tc make programmin; languages understandible (to the

human), and it the same time keep error-checking features,

sucn as strong typing, embedded in them.

Hig-level programmin; languages free the usar fr3m son -

of the details of machine imwlementation, and hence these

lanjuages are more powerful and understandaole than macr.in

languages. Figre 2.1 illustrates a siziple "aid" instruc-

tion written in four ways: machine langudja LRef. 10],

assembly language [Ref. 10], high-level lan uage, and

natural language.

Another advantage of high-level languages is that they

are trar.sortable, i.e., they can be used on mare than one

type (brand/model) of machine. zompilers and interpreters

take care of translating them into the instruztion set of

the target machine. Programs written ia high-lev-l. larguag;es

are therefore easier to maintain throughout their life

cycle.

Through the years, high-level languages have become more

powerful and more understandable. In the next section I will

discuss the evolution of high-level languages.

4
C. THE EVOLUTION OF IMPERATIVE LANGJAGES

With Figure 2.1 in mind,' it's hard to imagine how

people put up with machine language for so long! As we shall

* see, successive generations of high-level languages have

'Note that Figure 2.1 is an extremely simple example.
When conditional expressions, looping, and recursion are
introduced the differences in complexity among the
different types of languages become even more pronounced.

15



%qI

Machine L uaje (Intel 8080)

10110111
00000110
20011001
00111110
00000111
100000001 1010011

1101100001110110

A ssem Lanuage (Intel 83)

SUB A ; clear accumulator
1 V1 B, 25D" place 25 in B register
MVI A, 7D ; place 7 in accumulator i ciruao
ADD E ; sum of 7 ai-d 25 plazed in aczi.mulator
OUT D8 ; prir.t 32 (D8 is port to printer)
l.LT ; stop program

High Level Lan_.u_4Ie

Begin
A 25;
B 7;
Sum := A + B;
WRITE LN (Sum)
End.

Natural Langua:e

Print the sum of 25 and 7.

Figure 2.1 Language Comparisons for a SimpLe "Add"

made programming much easier, but many feel it is still too

complex and tedious for the average user to pick up. Thus

the ultimate isers of computing power--businessman, accoun-

tants, scientists and engineers--still require a middleman

to communicate with their machines [Ref. 12].

* As we quickly look at the development of imperative

programming languages, let's keep in mind tha attributes

16
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these languages should have, 2 some of which are listed in

Figure 2.2.

I I
•I"* easy to learn I

I easy to understand I
I trans ortable from machii.e to mcnine
1 free the user from mundane tasks

e nable the user to work at a higherlevel of abstractioni
do what the user intends

Figure 2.2 Desired Attributes of High Level Languages

People in all waiks of life seem to resist :aange. :ihos-e

computer scientists who were "comfortable" with machine

language embraced the concept of the assembler, since it

made coding easier, and translated directly into machine

ldnguage. This helped the transportanility of the program,

since a given program could be ran on a different machine

once it was reassembleI. The concept of hich-level.

languages, however, was not so readily accepted by these

scientists.

The principal objection to high-level languages was that

they degraded machine efficiency, and hence a significant

portion of the speed advantage of the computer would be

needlessly and wastefully lost. FORTRAN was able to gain

acceptance because it generated code that could usually

e-ual, and s~metimes surpass the efficiency of code gener-

ated by hand "Ref. 3: pp.33-34]. FORTRAN employ.d sophisti-

cated optimization techniques. That, coupled with the fact

2For a more complete discussion on the development of
attributes in prog ramminq languages, see MacLennan's work
[Ref. 3. 1 am not considering such things as Pirnas' prin-
cil e of information hiding, but rather will Eocus on the
unerstandaility of the language and the degree to which it

0 lends itself to concurrent processing.

17
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that it was iesigned specifically to be implenarted on the

IBA1 704, allowed it to achieve an efficiency greater thar

many current-Jay prcgramming languages. It is extremely

important to note that the de sian6 of the ~r 1 .tnin c

lanqgd.ai! foll:wed the desi qn of the machine. This is a

trend which his remained throughout the evolutioa of imiera-

tive programming languages. It was auite a redsonable depeni-

dency at the time that FOaTRAN was developed, siace computer

hardware was much more costly than computer softwarez. T'his

trend has beer. reversed (Ref. 28], however, so irt least fron

the viewpoint of cost, we are now fred to d, vel: p languijes

without specific liardware con -iuratians ir, .tia . . . and t-e-en

deveIop, the hardware based on the sotftware r-3.uirements.

FORTRAN had a tremendous impact o~i tae compi ter science

industry. It certainly freed the user from zany mundane
tasks, and eniabled him/her to worK at a higner level of

abstraction. However after the "honeymoon" of FORTRhAN was

over; ways in which it could be improved began to surface.

In 1968, Dijkstra stated that he was convinced that the 12

to should atolished from high-level languages [Raf. 114]. tHl

felt that the jo to statezent was an invitation to make a

mess of one's program, since it was so anstructured.
AL3OL-60 had many features which potentially mide programs

much easier to understandI, and nence easier to maintain.
Indeed, Wulf [Ref. 15] developed a systematic way to elimi-

nate ag tos from a program, by introducing Bolean vani-

*ables. Wulf was among many who seemed to feel that

efficiency should not be maximized at the expense of under-

standability of a pr cgram. There seemed to be a strong (and
in my view healthy) trend toward developing languages that

* were "user friendly." This trend continued with the design

of Pascal, which was developed as a "teaching la-nguage". It

also encorponated strong typing dad parameter passing safe-

guards in order to protect the user from pcogram side

* effects.

18



Shortly ifter Pascal was developed, W4ulf and Shaw

declared that global variables were also harmfuL (Ref. 16].

He jointed out that they also lead to side effe:cts, and were

really a result of sloppy (and lazy) programming.

Throughout the development of imperative progra~min,5

languages, a strong effort was made to nave them serve treir

(human) users by making them easier to learn a.ad to und.r-

stand. At the same time, vary large scile integrition (VLS2)

circuits were teing developed, which wds L-arKL ng comuter

hardware both more efficient and less expensive. This va.
part of the reason why machine efficiency couli Le sacri-

ficed for the sake of language clarity. John Bizkus (ircr.i-

cally, the man benind the design of FORTPAN) poLnted out in

1978 [Ref. 4] that imperative iar.uajes were slaves to the

word-at-a-time architecture on whicn they were originally

developed. He tagged one more construct as being harmful:

tae assignment statement!

D. THE VON NEURANN BOTTLENECK OF PROGRAlKING LAgGUAGES

Although the von Neumann architecture was a brilliant

breakthrough in the development of computer sfstems, its

function relies on the transfer of information between

memory and the central processing unit along a bus. Inherent

in this architecture is the fact that information flow is

limited to one word at a time. Unfortunately, this limita-

tion (known as the von Neumann bottleneck) has put an upper

bound on the potential speed of conventional computers.

Remember that one of the reasoas that FORTRAN was so

efficient was that the designers of its optimizer used the

instruction set of the target machine as the frame of refer-

ence from which they worked. As successive geaerations of

languages were developed, designers depended less and less

on the architecture of the target machine(s). iowever, in

19

4' • " " . " , " , " ' " " ' -" " " " " " " ' - . . ,. . - . . - . . . . " ,,. ,.' . ,., , .. .. ,.T



most cases, languages were still ieveloped using the von

Neumann architecture as the q!Ea developmental framework.

Backus points out (Ref. 4] "...programming iaa gua es use

variables to imitate the computer's storage cells. Control

statements elaborate its jump and test instruztions, and

assignment statements imitate its fetching, storing, ani

arithmetic. The assignment statement is the von Neumann

bottleneck of programming languages ani keeps us thinking in

word-at-a-time terms in much the same way the computer's

bottleneck does."

Backus -oes on to deszcibe how ix,erative laanguages : ive

stizled the zreativity of cuiiputer architects, since ::1.7

architects are in a way held prisoner by the von Neuman:.

mindset. Moreover, even languages wnich have ittempte-i to

avoid the imperative features (such as LISPI nave bee.

engulfed in von Neumann features. 3 It would seen that thkre

is a vicious zircie between the architecture bottleneck an.

the language bottleneck. If so, then why aren't inperativu

languages good enough?

The reason is that many computer architects have ahan-

doned the von Neumann concepts in their designs, and are

coming up with designs which can potentially process infor-

mation much fister than conventional machines. Lerner points

out that the advent of VLSI technology has made the develop-

ment of highly parallel zomputers a practical possibility

[Ref. 17]. He says, "Of the various competing ideas of how

* a parallel computer can be built, the best known and most

developed is called data-flow. In data-flow computers, each

of many identical processors calculates results as the data

for a given computation becomes available."

3 LISP has features such as "PROs" and "SErZ" which are
really forms of the assignment statement. In Chapter IV I
give an example of a LISP program which illustrates this

4 point.
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The groundwork has been laid for concurrent processing.

" In order to utilize the potential af parallel processors,

the bottleneck of programming languages must be eliminated,

or at least reduced. This has been a topic of :onsiderable

discussion, 4 particularly in operating systems, where the

concept of "processes" is used. There are at least tnree

difficulties encounterei with the concurreat process

concept: communication, synchronization, and non-

determinancy. There is an excellent discussion of these by

Bryant and Deinis, using the airline scheduling problem as

an example [Ref. 19]. DijKstra describes a system of "coos-

erating" se~uential -rocesses in wnich ne use3 two st a-

phores, "P operation" and "V operation" to permit

concurrency and eliminate side effects [Ref. 18]. There are

0 difficulties posed by this system: the processes must be

cooperating, and there exists danger of a "deadly embrace"

(deadlock).

Hoare describes a system of monitors which assumes (as

in the case of semaphores) that all processes have access to
a single shared memory [Ref. 20]. Both semaphoc:s and moni-

tors provide a means to suspend the execution af processes

until certain conditions are satisfied. Problems of deadlock

remain an issue. Actor semantics is another way :)f enharcing

parallel processing through message passing [Ref. 21].

All of these methods are attempts to extend the power of

imperative languages. They try to circumvent the limitations

of the assignment statement, rather than dealing with it

directly. In order to fully utilize the conputational/

processing power of parallel machines, parallelism must be

built into the languages themselves.

4Concurrent processing is not a new concept, but it
becomes even more important in view of the breakthroughs
tnat are being made in computer architecture.
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An extension to Pascal was establisr.ed witi just t.is

* purpose in miad. Essentially, semaphores were made avail-

able for Pascal, which allowed the programmer to take advan-

tage of concurrency. Pascal has no built-in support for

concurrency. It is the responsibility of the programmer to

identify critical sectionss and to "protect thea" with P ani

V operations.

The difficulty with utilizing the above method to writ_

concurzent program sectiois is that it forces the pro-ranrer

to think at too detailed a level. iat makes thie chance of

creating an ecror (and perhaps one which will te marn este

oi, iv in sutle bat important side effezts) all too ;reat.

There are two mainr issues in prograraming languages u..ici.

support concurrent processing [Ref. 19]. The tirst is that

tne expressive power of tue language should b2 maximized.

The second is that programs should be clear and understand-

able. The latter is especialJ.y important in concurrent

programaing languages.

Ada is another example of an impeative laaguage which

attempts to make concurrency more attainable. Its designers

seem to recogaize that the assignment statement is directly

related to the concurrent processing limitations of impera-

tive languages. Booch suggests that therein lies the

strength of Aia: a program designer can take a declarative

view of the solution, not the imperative one thar many other

languages force them into [Ref. 22]. The basic construct

. for concurrent processes in Ada is the task. A task is like

a package, but instead of types, constants, variables,

procedures, and functions, a task exports only task entries.

Task entries correspond most closely to procedures with in,

SA critical section is a piece of progran belonging to a
class of program sections of which only one can be executed
at a time. In other words critical sections are inter-
dependent. In order for program sections to run concur-
rently, they need to have mutually exclusive access to
critical sections they reference [Ref. 25].
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out, or in-oat parameters. The ir_m£_jeentation 3f a task is

hidden from tae user in the same manner as a package body.

Tasx bodies describe the necessary synchronization of the

implemented entries [Ref. 23].

The task concept does enhance concurrent p:ocessing at

the course-jrained level. Ada also encourages modulariza-

tion, which from a design point of view, en:ourages the

development of components which lend themselves to concur-

rent processing, i.e. are independent of one another. Also,

tne task is a built in feature of the lanjuage whlic

directly supports concurrent processing.

In my view, however, Ada does not go far nough.

Dijkstra and others identified the i t as narnfui

[Ref. 14), tne solution was not to reduce the aumter c! ZO

tos, but to eliminate them through structured ?rogramir.j.

Similarly, programmers could be forced to a hijher level of

abstraction through a functional programming laguage (FPL)

which eliminates the use of assignment statements [Ref. 24].

In my opinion, the best way to eliminate assignment

statements and to maximize concurrent processing is throdgh

evaluation ocder independence. Functional programming

languages exhibit this property. In the next chipter I will

discuss evaluation order independence and functional

programming languages in more detail.
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III. FUNCTIONAL PROGRAMM1ING LANGUAGES: STRENGTHS

A. AN OVERVIEW OF FUNCTIDNAL PROGRAm1ING LANGUAGES

The functional programming to wnich 1 have been refer-

rina is known by a variety of names, such as adplicative

pro-jramning and vilue-oriented programzin4. t is a .nethol-.

of programminr which iiffers from inperative p-9ranmi-; i-

several important wdys. As 1 have Ieon in -revIous

c'-ipters, imperative iaLjuaLges lepeni -eavily -ti. assi

ment statement for accomplishinr theiL tasks. va c-.

points out taat most imperative programming !inguaje: :-

Lasically collections of mechanisms for routing control fro:.

one assignment statement to another. In a functional -

cation, the central idea is to apjly a functior. to its ar:u-

ments (Ref. 3: pp. 34 4-345]. This can be done in a var;tv

of notations (discussed later) but is common-ly x .resse il.

Cambridge Polish. Cambridge Polish is also called p.refix

notation because the operator is written befoc_ the oper-

ands.6 Functional notation 4uite naturally allows the

programmer to raise himself to higher levels of ibstraction.

This is because functions can be applied to funztions. (See

Figure [3.8i for an example.) Functional programs also use

"layering" to free the programmer from details. LFor example,

in order to apdate an array, the programmer dould simply

call the function u date (Ref. 24] (Figure 3.1). Such a

function replices the ith element of array A with x. The

programmer need not concern himself with cons, raest, or the

recursive nature of the function. He is able to concentrate

on building proarams rather than zoncentratLng on the

6 As a simple example, the infix algebrai: expression
(a+b) would be written as plus(a,b) in a prefix functional

4 notation.
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up date(A,i,x)=Tif i=I -- cons(x, rest A )elsecons first ,
update(rest A, i-1, c)]

Figure 3.1 Functions Applied to Functions

oLjects which make ui the program 'Ref. 11]. lfis leads to

projrams which are more understandable, and hene easier t:

zaintain. There is a cost involved though: program effi-

citLcy. Hend-rson estimates that f:r.ctio.al pc: ras Mav n

as ,luch as tan times less efficient tn.an mactiie language'

(Ref. 5].

4 To thoroughly discuss the development jf i functional

programming language is beyond tne scope of this aper.

Rather I will give a few simpie eKamples. In the next

chapter I will give examples of functional pr:graffs whicr

are a bit more complicated. A more ietdiled explanation of

the semantics of functional programming can De found in

textbooks by ienderson [Ref. 5] or Burge [Ref. 26], or in

MacLennan's soon-to-be published text [Ref. 24]. As T

mentioned earlier, LISP has many functional features.

Therefore, an understanding of functional programming seman-

tics could also be achieved by studying LISP, although one

would have to be careful to "filter out" the imperative

*e features that it contains.

t This efficiency loss is due not only to compiler use,
but also to the fact that functional pro grams geaerally have
many more procedure calls than do impera tve projrams. Note
tha efficiency loss here assumes the use of a ailprocessor.
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1. Pure Expressions

MacLeanan discusses two "worlds" within programming

languages: the world of statements and the worli of ex2es-

sions [Ref. 24]. In the world of statements, the order in

which things are evaluated is critical. A simple example of

this is listed in Figure 3. 2.

When issignment statements are present, it is suite

possible that different sections of zode witain the same

program will be inter-dependent. Sach inter-depe2 dencies can

segment A

j:= 3;
y:= 2;

y:= 31;

y:=Z

print y)

Figure 3.2 Evaluation Order is Important with Statements

be avoided by using pure expressions. A pure -apression is

one which contains no assignment statements, either directly

or indirectly. An example of an indirect assigament state-

ment would be an expression which contains an assignment

statement hidden in a funztion, such as in Figure 3.3.

Arithmetic expressions are good examples of pure

expressions. tn pure exprEssions, the operators ire "memory-

less", that is, the expression always has the same value

within a given context. For example, in a context in which
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(w4w
y=3, w=2, f(x)= 'X:=

Figure 3.3 Assignment Statement Hidden in a Function

a=2, a+3 will always be 5. Moreover, the evaluition of an'v"

subexpression will have no effect on the evaluttion of any

other subexpression. Figure 3.4 presents a pure expressio:

in tree form.

I---- ---------- - -- -

x

-

A B C D

times[plus(A,B), minus(C,D) ]

- - -- - - - - - -J

Figure 3.4 A Pure Expression

Notice that not only can the sibexpressibns be eval-

uated in any order, but (assuming the availability of more

than one prozessor) they can be evaluated simultaneously!

This is one of the big advantages that pure expressions

offer parallel processors. This property of ure expres-

sions, indepen dence 2f Evaluation order, is called the

Church-Rosser p2o2ty (Ref. 26]. It allows :ompilers to

choose the evaluation order that will make the best use of

machine resources [Ref. 24].
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The evaluation of the expression sta:ts at the

leaves of the tree. The 21Ls operator can be applied to "A"

and "B" as soon as they have values. Similarly, the minus

operator can oe applied to "C" and "D" as soon as they have

values. The times operator can be applied to the "-" and " "

nodes as soor. as they have values associated wirh them. I n

more complicated expressions, we can envision values "jerco-

lating up" the tree in many different subexpressions. if th-

computer had many processors, then the computation of ::ary

subexpressions could he performed at tne same tine.

The p;roperties of pure exressions are simmarize in.

Figure 3.5. :lany of thes-i Properties are ida!, suiteC fo

programs that are to be rua on a multi-processar, such ds -i

data-flow computer. I will elaborate on some of then.

* value is independent of the evaluation orde:.
r eferertial transparency
Do side effects
in uts to an operation are obvious from

t e written form
effects of an operation are obvious fromIthe written form

Figure 3.5 Properties of Pure Expressions

As I mentioned above, independence of evaluation

order is an extremely important property when it comes to

concurrent processing. Recall that some imperative languages

have mechanisms for evaluating different program segments in

parallel, but that the burden is on the programmer to iden-

tify the critical sections. This is not at aLl satisfac-

tory, because it makes the concurrent processing mecianism

quite subject to programming error. Moreover, the errors

which are made are not likely to be at all obvioas. Rather,
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they will bE 3anifested in side effects, some of which miht

well escape leteztion even under rigorous tescing of the

program. In pure expressions, we are guaranteed that subex-

pressions can be evaluated concurrently. There ire no crit-

ical sections, i.e. there is no interdeoealence amon

subexpressions! This frees the prograomer from tie burden of

identifying the critical sections, iad places the concur-

rency mechanism exactly where it belongs: inside the

language itself.

The property of referential transnaEicy is on-

which has the potential to greatly improve program i-

ciency. it siys that a given expression (or si: expressio..)

will always evaluate to the same value witnin a given

context. Henze if a giver, expression is used several timeo

* in the same context, it need be evaliated onl once! Thb

value of the expression could be placed in a register, n a

. look-up table, etc. Cf course, the compiler uo-Id also have

the option cf reevaluati.,g the expression, if that turne.

out to be more efficient.

2. Pure Functions

Functions are mathematical mappings from inputs to

outputs. This means that the result depends only on the

inputs. If the functions are made up of pure expressions,

i.e., they contain no explicit or hidden assignment state-

ments, then the functions will retain all the pcoperties of

* pure expressions. This is the basis of functional program-

Ming. Functions are applied to functions to raise the

programmer to higher and higher levels of abstraction, and

thus free him from as many implementation details as

0 possible. The basis for this is pare expressions, which in

turn are used to build pure functions.
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3. Functional Prograain

In addition to the properties of pure axpressions,

functional programs have some attributes which make them

superior to conventional languages. Figure 3.6 lists some of

these attributes.

I I
I easy to use existin- functions to Luild new ones

easy to combine functions usinj comkosition I
I * subject to algeiraic manipulation

I easier to prove correct
easier to understand.I i

Figure 3.6 Properties of Functional Prolrams

The basis for most functional programmin languages,

including the one that I will use in my examples, is similar

to that used in LISP. The functions first, ret., a ipd,

reverse. sub, null, and cans are used as an integral part of

the language. If you are not familiar with thes? functions,

i refer you to chapter two of reference [27], or to cha~ter.

nine of reference [3].

There are many notations used in functioaal program-

ming. Although some people will claim that one notation is
more readable than another, and others claim just the oppo-
site, I believe that there is not really much difference

among the notations. This, like many preferenzes, seems to

be due to the system with which you have become most

familiar. A similar situation exists in calculator use,

where some people prefer a Hewlett-Packard calculator

because it uses postfix notation, and others prefer to use

Texas Instruments calculators because they use infix nota-

tion. The differences are more a matter of focr than they

are of substance. Similarly variations among notations in
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functional programming languages really come down to

syntactic sugar, and not to the expressive power of the

notations. I have chosen the notation in this paper as a

matter of typographical convenience.

In functional programming there is onli one built

in-operdtion: the application of a function to its argu-

ment(s) [Ref. 24]. As I pointel out earlier, p

would apzly the "plus" function to the arguments 'a' and

Conditionals are a very natacal and i3jortant part

of functional prograrming. For example, if we want to iei--ir

a function which returns the length of a list, iE can do so

as in Figure 3.7.

length i
if null L --- > 0
else length(rest L) 1 1

Figure 3.7 Conditionals in Functional Defiaitions

Note that the definition of length is recursive,

that is, it is a function which calls itselc. This is

extremely comion in functional programming, since to define

functions explicitly (by enumeration of all input-output

pairs) is not very practical.

The practice of defining functions in the fashion

used in Figure 3.7 often makes the proof of correctness of

functional programs much more straight forward than the

proof of imperative programs. Quite often recursive func-

tions can be proved correct by induction. Such a proof by
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induction can proceed from the functions of innermost

nesting, to the outermost nesting.S

I hive mentionei that functional programminr

languages permit the user to work at a nigh.ar level of

abstraction. For example, the map function, applies a one-

argument function to every element of a list. For example,

if L is a list of numbers representing angles, map sin

computes the sines of the corresponding angles. Fig ure ."

is the definition of rap sin.

I map sin L
I if null --- > nil

I lse cons'sin(first L), ma- sin(rest i)]

Figure 3.8 Mapping Across a List

Functional programs also lend ttemselv s to aide-

braic manipulation. For example note in Fig-ire 3.9 that

functions often are commutative. Backus gives an excellent

presentation of the algebra of functional programming

languages [Ref. 4].

Functional programs seem very natural to people with

a background in mathematizs. rhe concepts of :omposition,

reduction, transposition, identity, etc. are intuitive to

tnese people. They can frequently learn a great deal about

functional programming in a short period of time. On the

other hand, the notations of functional programming

languages are often such that they are not intimidating to

people without a strong background in mathematics. Although

most functional programming is based on the work of the

8 In the length example, first the rest function would be
proved corrg-E,-and then the len-runction would be
proved.
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lambda calculus, it does not adopt its intimidating

symbology.

cest(map sin L) = map sin(rest L) I

Figure 3.9 Algebraic Properties of FPLs

Functional programming languages are la3s likely to

"throw dway" information that the programmer his tlaan art

conventional programming lanJuages. For eample, s'I :os,-

that a trogra~mer wants to map the product redaction across

a list of lists. He knows what he wants to do: he wants to

use a ger eral function w.izh will take inputs of the forr

<<2,3>, <1,4,6>, <3>, <>, <5,5>>

and produce a list like 9

<times(2,3), times(times(1,4),6), 3, 1, time3 (5,5)>

which evaluates to

<6, 24, 3, 1, 25>.

Figure 3.10 shows the definition of such a functLon, calle

Eap In such a system, the individual product reduc-

tions of all the lists could be performed simultaneously.

The programmec knows that, and indeed that can occur if he

uses a functional programming language. However, if he

writes his program in a conventional languag., such as

FORTEAN, he will be forced to write it using "Do loops".

Even though he knows that the operations can be aerformed in

parallel, that information is "hidden" from the machine.

Thus operations which couil be safely conducted in parallel

9Actually, each element in the list (except '<>") would
call the func ion times once more, in the ?orm times(x,1)
where x = the elemeKT-E the list.
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will be perfarmei se~uentia2ly because of ianIA.22 imoe
limitations.

I pro L =null L --- > 1
else times[ (f irst L),

I map prodL
null L --- > nil

Ielse con~s [pro (frs

Figure 3.13 Product Reduction Aczross a List of Lists

B. FUNCTIONAL PROGRAMS ON UNIPROCESSORS

Functional programming languag4es (ind in pazticular thne:

lambda calculus) were in existence long Lnefore the reed for

concurrent Fr:ocessing 1-ecame apparent. As I dis:issed in the

first chapter, programming languages should sterve tneir
(human) users. A large part of that ;a a eahee~b

making the language unerstndable to people! H enlder son
states that the willingness to accept less ef:3.cient tut,

more understandable prog;rams is a trend which will accel-

erate in the near future (Ref. 5]. One w iy to make

languages more understazdible is to make them simpler and

more uniform. Functional programming lanjuages, with their

one -built-in operation, are certainly that! Because the

programmer can work at a higher level of abst:action with

functional programming langu-ages, the programs he writes can

he shorter ari clearer. Since softw3.re costs Dv~rwhe'Lnin~l-y

dominate harddare costs (Ref. 28), and since the maintenance
phase (including program improvement/enhanceme,it) is the
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longest phase of a program's life cycle, we can gain a great

deal by using a programming language that is easl for people

to understand. A carefulil written fanctional pc:)graml o will

usually be much more readable than one written in a conven-

tioral language. That alone makes fanctional prcgrammir.g an

attractive option.

Exhaustive testing of anything JD.t a trivial program is

not usually practical. Even when a program is subjected to

extensive testing, "bugs" freuently are presaat in early

versions. Thece are many situations, such as military apii-

cations involving nuclear weapons, when even a very low

probability of program eror is unaczeptable. la such situ-

ations, we woaid like to prove the program correct tefore it

is used. Functional prograzmirg lends itself to for:ai .tn-

0 ematical proofs. That is not to say that proofs of cominyi-

cated programs are easily accomplished, even if the projram

is written in a functional languagae. However, proof of

correctness is much mor achieveaole if the program is

written in a FPL.

C. FUNCTIONAL PROGRAMMING ON A NULTIPROCESSOR

One of the tradeoffs we deal with when using functional

programs on a uniprocessor is program clarity is. program

efficiency. rhe property of referential transparency always

applies to functional programs. Therefore, even on a

uniprocessor, there is a certain amount of efficiency

gained. However, this will be offset many times over by the

increased number of procedure calls in a functioaal program.

So on a uniprocessor, the user gives up efficiency for

0

1 OLater ia the paper i will give a comparison between a
ogram written "mechanically" and an elegant solution. The

differences are not always great. In any case, a gool func-
tional prograimer should be able to easily rewrite mechani-
cally transformed programs so that they are guite
unierstandatle.
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understandaility. In other words, it is az:eptable for

understandable programs to take longer to run.

On a multiprocessor such as a data-flow macaine, effi-

ciency must be viewed in a different light. Sinza the system

has hundreds or even thousands of processors available for

use at one time, any given program car take advantage of

that only if different program parts can be ran simultane-

ously on different processors. In f -ctional programs, the

in ef'iciency caused bv the jrocedure calls is more than

offset by the number of rocessors wr!inj o:. tt. program a-

any one tine. Thus the in"epender.e of evaluation o Z e:

pla."s a crucial part in tne turnarounl tixe of I pZ) . di 3:

a multiprocessor.

On a processoc such as a data-flw machine, I functio.:al

* _rram can be both more efficient iai aore uzltrstandable

thin one written in a convertional lanual.

D. UNDERSTANDABILITY OF FUNCTIONAL PROGRAMS

One of the principal advantages of functio-al program-

ming languages is that they allow the programmer to work at

a higher level of abstraction, and taus free him from man-,

implementation details. This is accomplished througn the
"layering" principle. Functions are defined using previously

defined functions. In this way, the primitive furctions of

the language, although they are impli :itly included in every

program, need not appear explicitly anywhere in the code.

A simple example of this layering principle is found in

an exercise in Henderson's book [Ref. 5: p.280]. First we

- define a function which takes as argument a pair of numbers
and returns as result their minimum and their maximum. This

is done in Figure 3.11. Next we define a function which
takes ds argument three nambers and returns three results,

the numbers in ascending order. rhis is showa in Figure

3.12.
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As you can see, it is easy for tae progrlnufer to view

the sort function from a higher level, such as:

1. Order the first two elements.

2. Order the second two elements.

3. Order the first two elements.

When the programmer is writing (or reviewizj) the sort

function, he doesn't have to be concerned witn the details

of how the ocder function works. That was dDae when the

order functioa was writte. Of course, this sane thing can

be done when working witi. an imperative linguaga, tut it is

the very essence of functional projrajming.

IJ order(x,v)=
if x z y then

~elIse

Figure 3.11 The Ordering of Two Numbers

sort3(a,b c) =
[let <a t> =order(a b)
(let <Lc> = order(L,c)
(let <a b> = order( ,b) |(a, b , c>J H

Figure 3.12 The Sorting of Three Numbers

Even functional programs are not always easy for people

to read and understand. This can be because th;? program is

not written carefully, or because the program is terribly

complex even when written in a functional language. However,
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even when functional programs are complicated, they still

retain the properties of pure expressions. raey will be

easier to prove than imperative programs, and will still

lend themselves quite nicely to concurrent processing.

1. Eleq1nt Programs

In order for a programmer to develo functional

programs which are as efficient and as un'Aerscandable as

possible, the problem must be stripped down to its Dar--

bones, and developed fcom the outset wita a functional

a2.roach. This will te a time consuming process, since i-

will involve the same kinds of steps as does the dcVel3.-_.t

of an imerative program. The functional progrim wiil have-

tf.e advantage that its developers wili be able to work at

hig er level of abstraction, but it will still takE consid-

eraole effort to develop the progrim.

-he resulting program shoald be one which will Le

extremely easy to read, -nd which wiil have all the alvan-

tages that we need in order to maximize concurrent

processing. rn comparison to an imperative proj-am, it will

he easier for people to understand, easier to prove correct,

and will remove the burden of identifying the critical

sections froc the programmer. Keep in mind, however, that

the development cost of this program will be of the same

order of magnitude as the development cost of an imperative

program to do the same job.

2. Mechanical Transformations

Let's suppose that we already have an imperative

program for a certain application, and that we a:e satisfied

with its performance from every aspect except one: speed of

execution. Or suppose that we are considering bating a data-

flow machine, but we don't want to "throw away" all the

existing software which is written in an imperative
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language. Of course, we can develop "elegant" functional

programs, but that really comes down to throwing away our

oid software, which is something we were trying to avoid.

Henderson has developed a mechanical method which takes an

im-perative program and transforms it into a f nctional one

[Ref. 5: pp. 136-149]. The result i- a program that has all

the proerties of a functional program, except that it mijht

not he as easy to understand as tne "elegnt' solution.

However, tne developmer.t costs of mezhanical transformatio.

are nominal. I present this mechazical tcnsfczmation

pracess in t1e next chapter. The apdroazh that it tikes i.

vtry much liKe the approach that ulf and Shaw too-.

[Pef. 16] when they mechanically Zemoved __ Tos Dro

roArams. Heniezson's metnod is an excellent and inexpensivc

* way to transform programs which will not resuir much main-

tenance, i.e. programs which have neen time tested an' whicl

perform satisfactorily. They are also very readable, ani

hence easy to maintain, although pecaaps not to the extent

of the "elegant" solution.

E. ALTERNATIVES TO FUNCTIONAL PROGRAMMING

There are certainly many applications for wiich impera-

tive programs will perform quite nicely. Moreover, there are

some applications for wnich functional programs are not

particularly well suited. Recall that the operatars in func-

tional programming languages are "mamoryless". This means

that functioaal programming languages are ill-suited for

applications which must focus on state changes. Another

argument that could be made against functional programming

languages is that they are not common in industcy. This is

true, and is probably the ver-y reason tnat COBOL and FOE:TA!1

are still so prevalent. I do not intend to dwell on people's

resistance to change, nor on the management coasiderations
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of how to effectively implement caange. i intend merely to

present a reasonable argument for zhangs, and leave the

decision to the reader.

There may be cases where it would be easiar and more

cost effective for a firm to extend their concurrent
processing capability through a lan-uaje like concurrent
Pascal. No doubt, such a plan would have a g:eat deal of

merit, especially when considering the costs that could be

saved iL programmer training. However, if such a Elan wereI

adopted, the responsibility to identify criti:al section-s

(which could lead to a whole realm of iotential errnrs)

would te placed on the shoulders of the programmer, ins-tta.

of on the lar.4uage itself, where it belongs. There mi-ht be

errors of omission, which would result in idle ?U time, an-*

errors of commission, which would result in potential z-i.

time errors.

Finally, I must point out that taere are otaer "special"

languages, such as VAL 'Ref. 29]. VAL was develooed at

M.I.T. specifi:ally for the purpose of concurrent

processing. The designers have cleverly kept tne assignment

statement (":=") in the language, presumably so that experi-

enced programmers would feel "at home" when they began tZ

study it. But, the ":=" does not have the meaning of the

assignment statement at all! Just as in functional program-

ming languages, VAL uses variable free prqoramiir.. I cGraw

refers to a sin le-assiqnment rule, which means that once an

identifier is bound to a value, that binding remains in

force for the entire scope of access to that identitier

[Ref. 29: p.51J. This is how VAL achieves the proiperty of

evaluation orler independence, and in turn why it is so well

suited for cancurrent processing. In my opinion, VAL is

really just another another member of tha functional

programming language family. Its differences ar_ slight and

are mostly a 2atter of notation.
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in the next chapter I will describe Hendersonts trans-

formation jurcess, and extend it to handle arrays and

records.
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IV. FUNCTIONAL PROGRAMMING APPLICATION3

A. FROM IMPERATIVE TO FUNCTIONAL

In this chapter I would like to suppose taat we have

already decided to take advantage of the processing power

afforded by a multiprocessor architecture. In order to do

this, we will have to employ a programming llnguage that

does not use assignment statements. For prograas which are

being developed for the first time, we will ae the fui:c-

tional approach from the outset. But what dbout existing

software that is written in an imperative langiage? As I

pointed out in the previous chapter, we couli develop new

functional programs. The problem with this methol is that it

in no way takes advantage of the investment we made wner. the

software was originally developed.

Henderson describes a mechanical way to tran3form inper-

ative programs into functional programs [Ref. 5]. This

method has the advantage that the programs which it produces

contain all the properties of pure expressions, ircluding

independence of evaluation order and referential transpar-

ency. For cases in which we are satisfied with the perform-

ance of an imperative program already in our inventory, anl

if these programs are not subject to a great deal of change

or maintenance, we could think of these as pcograms in an

imperative "black box". Figure 4.1 illustrates how

Henderson's method could be used to transform these programs

into programs in a functional "black box". 7Te resulting

programs have all the characteristics of the original

programs with respect to program zorrectness. Moreover,

redundant assignment statements in the imperative program

will be eliminated by the transformation process. Therefore
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if we were satisfied with the performance of the programs in

imperative form, we are uajanteed to be satisfied with
their performance in functional form. The performance of

the functional programs will be tie s:ime as t.3. imperative

programs, e2_glp that the functional roarams can be

processed on prallel processor.

Imperative [Henderson [ Functional I
I Programs j------->1 Programs

j mation

Figure 4.1 Program Transformation

In the next section, I will present thB basics of

Henderson's transformation process. As my basis I will use

an imperative program which takes as input tdo positive

integers, and which outputs the lesser of the two. I use

this trivial program not for its application valie, but only

to demonstrate the transformation process. I will ignore

the input/output mechanisms in the programs for now, but

will comment on them in general in my conclusion. Figure

4.2 shows the imperative version of the program.

B. HENDERSON'S TRAISFORArION PROCESS

The first step in Henderson's transformatioi process is

to make a flow chart from the existing imperative program. 1

The flow chart for the imperative program is in Figure 4.3.

f" -'In present lay computer science circlest the use of
flow charts to Levelop programs is nor encouraged.
Nevertheless it is a very useful tool here jst as it is
in Wulf and §haw's method of eliminating Go tos.
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procedure lesser (x,y,: integer)
var min: iateger; i

be gn
If(x 5 y) then

min:= X;
else
min:= ;*)writeln'C inj

end; (* rac ure min*)

Figure 4.2 An Imperative Program

The numbers on the edges of the flow cnart corra3,sona to tnh

steps of the transformation process as I derive the corre-

sponding functional irogram. Note that iocal ariazles in

the imperative program are eliminated in the =unctional

program.

The general procedure in the transformation process is

to begin at the exit of the program (or procellre) an! to

work backwards to the beginning. The exit is usially repre-

sented by the identity function.12 In this case it is the

variable min.

At (1) mi_ is output:

[mini

When crossing a block which is an assi qnRet statement,

that which is on the right side of the assignment statement

is substituted for all instances of the variable on the left

side of the assignment statement which are Eound in the

parameter list. Thus it is through parameter passing that

assignment statements are handled in functional ?rograms.

12 Throughaut this chapter, I will use "=,frly braces"
(M) to identify sections of program which have changed in
any given step.
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start

(3)

(2)

In x

Figure 4.3 Flowchart af "lesser"

step 2.
At (2) x is substituted for all instances of mrin:

Ix)

st e.2 3.
--- 3) y is substituted Aor all instances of mi[n:

(Y)

When crossing a decision block, the coudition of the

black is included in the code so that the pcogram will
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branch to one of two previously developed "steps". No new

substitutions are made.

ste . At (4) the program branches t: either (2) or (3)

(If x S y then)
x

(else)
y

When you have worked your way t3 the begin:ing of the
flaw chart, the function is defined. Figure 4.4 contains tne

functional definition of lesser.

-- --------I
lesser(x,y)=

I x
else

y

Figure 4.4 A Functional Program

C. EXTENDING THE BASIC PROCESS

In prograns which have loops in them, we aust have a

mechanism which "cuts" the loop, or else the program would
never terminate. This is done by giving each loop a function

name. The flow chart is labeled with the name it the entry

point. At the conclusion of the transformation process, the
definitions of all the "sub-functions" will be found at the
point on the chart where they are identified. For example,
let's convert an imperative program which doubles a positive

integer to its highest two digit number.' 3 If the input

13Just as in the last example, the program r use is not
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value is stri:tly greater than 30, it is returned as is. For

example, highest(2) = 64, highest(3) = 96, highest(5) = 80,

highest (150) = 150, highest (43) = 43, etc. Figure 4. 5

contains the imperative program.

F rocedure highest (var x: integer) ; Ie. in i
1 x > 30 then Iwritel r, (x)
elsebegin

while x < 53 do
x:= 2x;writeln(x

end (*if X 30...*)
end (*procedure highest*) I

Figure 4.5 An Imperative Program with Laping

A flow chart is developed for tue program (Figure 4.6).

As usual, the numbers on the flow chart correspond to the

steps in the transformation process.

step 1.

At (1) the output from the procedure is presented:

[x)

s tepa 2.
At (2) the "f" loop is cut, resulting in:

(f (x j

stepa_
At (3) 2x is substituted for all instances :f x:

f ([2 K)

intended to be useful, except in how it illistrates the
transformation process.
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referential transparency and only carry f(x) forward as we

proceed in the transformation process.

_ttea _.

At (5) the program branches to (4) or (1)

[if x > 30 then)
x

(eIse|f ( c)

This gives us the functional definition of ai if

we include the definition of "f" trom step 19. "he comp'.te
definition of hihest is contained in Figure 4.7.

h tighest(x) = I
I if x > 30 then

x
else

f (x)
Z) if x < 50 then

f (2x)
else Ix

Figure 4.7 A Functional Prograa with Looping

Note that the looping structure of the imperative program is

captured in the recursive nature of the function "f".

D. TRANSFORMING "COMPLICATED" STRUCTURES

The Henderson transformation process does n.t take into

account variables which ire part of an arraF or record

structure. The method of transformation is the same, but it

is not immediately apparent how to access thesa variables.

In the next section of the paper, I present the translation
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of a Shell sort from an imperative language (Piscal) to a

functional programming language. I use two fun:tions, b,

and update, to achieve access of arrays, and to update

elements therein. I handle records by dealing dith them as

lists of lists, and using sub to azcess them. The defini-

tions of sub, and update are found in Figure 4.1).

E. TRANSFORMATION OF SHELL SORT

As a more complicated example of the Heniersr. transfor-

mation process, I will present the algoritam Saeli sort ir.

imperative focm, and then give the step-by-step translation

into a functional form. I will also present nore elegant

functicnal representations of the Shellsort, aad make some

comparisons. Reference L30] provides an excellent discus-

sion of the Shell sort, although a thorough unde:stanin of

how it works is not necessary in order to follod the traris-

formation process.

The imperative form 3f the Shell sort is takeii from

Tenenbaum and Augenstein's text on data structures

(Ref. 31]. Figure 4.8 shows this program.

5
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const numelts = 100;
type arraytv = arrav(1..numelts) of intege:;

aptr 1.. numelts
incarray =

record
numinc: 1..numeits;
incrmnts: array (1. .numelts) of aptcand:-

var x: arcayfype;
n: aptr:

procedure sfiell (var x:arraytype;n:aptr;inc:iacarray);
vat j, span: aptr

incr y, K: integer;
f ound: b oolean

begin (*pcocedure shell*)
for incr = to inc.numincdo beginspan = inc. incrmnts (incr) ; (*span is the size*)

I* r the increment*)
for 3 = span+1 to n
do 5egin

*iinsert element x (j) into its proper*)
(* position within its subfile )

:= (j) ;
: - span-

found := false;
while (k <= I) and (not fou1d)
do if y (x(k)
then begin
x(k+span) x(k) ;
k -span

end
else found := true;

xlk+span): bend ( Eor...do begin*)
end 4*for...do begin*|

end ( prozedure snell-|

Figure 4.8 Shell Sort in Imperative Frm

The first step in the transformation process is to model

the imperative program in a flow diagram. This is shown in

Figure 4.9.

Because of the array and record structures used in the

imperative algorithm, I will use the sub and 1.d2a..e func-

tions. In figure 4. 10 these are defined, and the steps of

the transformation process are laDeled.
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Figure 4.9 Flow Diagram of Shell Sort
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Figure 4.10 Shell Sort with 11sab" and "update,'
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Using the same method that I have outlined in previous

sections, I now present tha transformation of ti.B Shell sort

into a functional language:

ste 1-

At (1). the sorted array is output:
(xl

step 2.
AT (2) the 'f" loop is cut, resulting in:

{f(incr, span, j, y, k, found, x, n,
inc) }

step 3.
A-- (3) there is a branch to either (1) oL (2i

(if incr < (sub (inc, 1) ,then)
f(incr, span, J, y,, found,

x, n, inc)
(else}
x

ste2 .
-AT (4) incr+1 is substituted for incr:

if (incr+1J < (sub(inc, 1)) then
f(incr+1 span is y, founi,x, n, inct ,Y

elsex

steu 5.
AT (5) the "g" loop is cut, resulting in:

(g (in cr , span, j, y, k, fotind, x,
n, inc))

step 6.
AT (6) there is a branch to either (4) or (51:

(if ( _< n then}
g(lncr , span, j, y, k, faund, x,

n inc)
(else}
if incr.1 _ (sub(inc,1)) then

f(incr+1 E span, j, y, k, found, x,
n, inc)

else
x
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step 7u
AT (7) 1±1 is substituted for j:

if jJ+1} 5 n ther.
g(inr , span, [j+1], y, k, found, x,

n, i nc)
else

if incr+1 _< (suh(inc,1) ) then
f(incr1 , span, (j+1 , y, k, found, c,

n, inc)
else

x

sten 8.
AY (8) update(x, k+s.2an , v) is substitutel f)r x:

if j+1 < n then
g(Incr pan, j+1, y k found,

elsupdatex, k+spar, •y)I, .. , inc)

if incr 1 < (sub(inc,1)) then
f (incr+1 , span, j+1, y k, found,

elseupdate(x, k+span, yya, , inc)
(update(x, k+span, y))

e step 9.
AT (9) the "h" loop is cut, resulting in:

{h(incr, span j, y, k, found,
x, n, inc)i

step 10.
-A(10) k-apan is substituted for k:

h(inr, span, j, y, Ck-span), found,
X, n inc)

-- eA(11) ua date(x, j.+sp _, auxt) is sub3tituted for

_X:

h(incr, span,, , k-spaa, found,{updatejx, ~spln, sub(x,k))},
n, inc)

6 step 12.
Ate(12) true is substituted for found (from (9)):

h(inzr, span, j, y, k, [true), x, n, in:)

step 13.
AT(13) there is a branch to either (11) or (12):

(if y < sub (x,k). then
h (incr span ,span found,

update (x, ktspan, sub(xk)), n,
inc)

[else)
h (incr, span, jy, k, true, x, n,
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AT-(14) there is a branch to either (13) or (6)

Cif (k Z 1) and (found = false) then}
if Y < sub (x,k) theLh(Incr, span, y, k-spau, found

updae (x, k+span, sub(x:k)), n,
inc)

else
h(incr, span, j, y, k, true, x, n, inc)

(else}
if j1 5 n then
g(incr , span ,+1 F [sub(xj)}, k,

found, upaate(x, k+span, tsuD(Xj))I
n, inc)

else
if incr+1 _< (sub (ir.c 1)) tt n
f(incr+1 , span, j+, Y, K, found,

update(x, k+sparl, y), a, ic)
else
update(x, k+span, y)

Note that it is this step that the function "h" is defined.

We therefore will take advantage of the property of referen-

tial transparency and carry h(incz, span, j, y, 'L, fournd, x,

n, inc) with is as we proceed in the transformation process.

step 15.

At (15) false is substituted for found:

h(inzr, span, j, y, k, [false), x, n, inc)

step 16.
AT-(16) j-span is substituted for k:

h(inzr, span, j, y, [j-span), false, x, n, inc)

s e 17.
At(b_ (x,j) is substitutel for y:

h(inzr, span, j, [sub(x,j)), j-span, false,
x, n, inc)

Note that it is this step that the function "g" is defined.

We therefore will take advantage of the property of referen-

tial transparency and carry g(incr, span, j, y, r., found, x,

n, inc) with us as we prozeed in the transformation process.
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s te2 18.,

At (18) §2an1 is substituted for a:
g(inzr, span, (span+1), y, k, found,

x, n, i nc)

step 19.
AT- (19) sub(s2b(inc,2) ,inC2J is substituted .or span:

g(in:r, {sub(sub(ipc,2 incr)},sub ssb(inc,2,n2 H+1, y, k,
lni, x, r., inC)

Note that it is this step that the function "f" is defird.

We therefore will take advantage of the property of referen-

tial transparency and carry f(incr, span, j, y, C, found, x,

r., inc) with is as we proceed in the transformation process.

stem 20.

At (20) 1 is substituted for incr:
f(1, span, j, y, k, found, x, n, inc)

recall that the function f is defined in step 19, the func-

tion q is defined in step 17, and the function h is defined

in step 14. Figure 4.11 is the functional progrim for shell

sort.

F. ELEGANT SJLUTIONS

An elegant solution is a program whica is lereloped from

the outset from a functional viewpoint, i.e. it does not

r transform an existing algorithm. The advantage of using an

elegant solution is that it provides you with a :ustom solu-

tion to the problem, i.e. it will be designed for the

specific purpose for which it is intended. That could lead

to a limitati:n in flexibility, just as a custon wet suit is

rarely useful to any diver except the one for dhom it was

specifically intended. But if the designer of the program
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Shellsoct(incr, span, y K, found, x, n, inc)
f (1. spa n, j, y , -oan, x, ., in-)

where f (incr, span, ,y, k, found,
g.inc X, n, l ncq

g(incr, sub (sub (inc,2 ,in.r),
sub(sub(inc,2),incr) +loy, k,
found, x, n, Inc)

and ; (incr, span, j, k, found,
x,.n, in c

h(incr, span, J., sub(xj), j-span, filse,
x, n, Inc)

and h(incr, span, , y, k, found,
if (k ?> 1) aXl (.ound = false) then.

if y < sub(x,k) then
h (ncr, span , , k-span, founl,

upap t(x k+span, sub(x,))

n, mc).

else
h~incr, span, J, y , k, true, x, n, inc)

else

if j+1 <5 n then
(incr , spar, j+1, sub xjj k, fund,
update(x, kspan, sub,Jn, i nc)

elseifincr+1 _< (sut (in~c, 1) thien-ff(incr+1 , sa jaF3+ I k, fo unr,

else
update(x, k+span, y)

Figure 4.11 The "Mechanical" Solutioa

keeps a broad view of the problem, the result should be easy

to read and understand. It should be much easiec to improve

than would be an imperative program, and because of all of

this, it should be easy to modify as the denands on it

change.

In reference [26], Burge deve-'ops an elegant solution

for the Shell sort. First he "streamlines" the algorithm,

ridding it of what he identifies as minor inefficien-

cies.
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Then he develops a functional program for that algoritnm' 4

[Ref. 26: p.222]. Figure 4.12 contains his solution.

I

sort 1 1 n
where rec sort a p n =

sort3 a p
sort2 a p
interchange a p

and sort3 a =if a eR3 > n
then ex
else sort a (3p)

sort (a )
sort (a + 2P)( p)

and sort2 a p =

if a + 2o > n
then exit
else sortm a (2p)

sortm(d + p) (2p)
and sortm a p =

sort2 a pinterchange a p
and interchange a p =intch 0

wlhere rec int-hPg)
if a + p n ; _
then exit
else if A[a + g]<A[a +p + g]

then Aa + q] :=: Aza + p + I
intch j + 2

else intch +

Figure 4.12 The "Elegant" Solution

Burge uses some notation which deserve discission. He

uses the notation rec as a "flag" to indicate thit the func-

tion being defined is recursive. When rec appears in a defi-

nition, both the left-hand side and the right-hand side of

the definition contain the identifier. Burge calls this type

of function circular (Ref. 26: p.20].

1 4 0n p.263 of reference [26], Burge states, 'Most of the
methods [which] have been ex ressel here in a functional
notation can be found in the extensive literature on
sorting." It seems that one should be able to infer from
that statement that the sorting programs he develops are
functional. rhis is not necessarily the case, which is apoint I develop in the ensuing text.
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The symbol ":=:" deserves special attentia, since it

appears to have all the earmarks of an assignment statement,

and also appears to be at the heart of Burge's p:ogram. The
":=:" exchanges two elements of an array, i.e., A[i] :=:

A~j] exchanges the ith and ith elements of arriy A. Thus,

given an array, A, of the form:

<6,8 1, 2,14>,

where a=1, p=2, and 1=1,

A-a+] Ara+p+I) would result in
-. <6, 2 ,1, 8, 14>.

This can be :onceptualizei in at least two way3. In wa;

would he to use a temporary variable and to ase a series of

assignment statements, such as listed in Figare 4.13.

tem p:A Va+
At a~:=- A Ca+ p+qjI
A a+pgJ].= temp;, I

Figure 4.13 Imperative Definition ":=:"

This clearly is not a functional approach and will cauase us

to lose the properties of referential transpareazy and eval-

uation order independence in our program.

We could also interpret the ":=:" as two successive

applications of the pdate function.' 5  This would result in

code of the farm:

update C [updatea , ( fa+qjg sub(A Ca p+qlI)],
ca+p+q] su A,a+ql

The effect of this code is listed in Figure 4.14.

* sSee Figure 4.10 for the definitions of sub and update.
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1. Take as input array A.

2. Return in array A' which is the same as arcay A
except that the (a j th element is the same as the
(a+p~q)th element ot array A.

3. Return in array A" which is the same as arcay A'
except that the (a+p~g)th element is the sime as the
(a~q th element of array A.

1 ( a ~ t h _ ___ ____ ___ ___ __-- ___

Figure 4.14 How the Functional ":=:" Works

This code is a little Jifficult to read, so now that WE

urJrstand its meaning, we will maKe it a separate function,

excharne, wnich "swaps" the (a+q) tn and the (a+F+q) th

elements of array A. Figure 4.15 contains the iefinition of
41 exchange.

(.up al uate (A, ,a+,], sub(A,[a+p+q]l) ),
I Exchange (A,a -

La~p~q1, sub A a }j

a ________________________ ______________ _________________

Figure 4.15 Funtional Definition of ":=:n

From a functional point of view, the meaning of ":=:" is

cleared up now, but there are still some questions about
Burge's "functional representation" of Shell sort. The code

then exit

appears in the program three times. This code i3 not seman-

tically acceptable in functional programming! What we

should be doing at these points in the program is returning

the sorted array. The code for this would not be difficult
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to develop, 1 ' but it leads us to the discovery of (from a

functional programming viewpoint) another difficulty with

Burge's program. The array to be sorted (presumably A), is

not listed as one of the input parameters of the program. It

probably is treated as a global variable, whizh of course

leaves the code unable to stand correct on its own.

The last difficulty with Burge's elegant solation is the

way he lists statements sequentially in the definition o:

rec sort. The program segment

sort3 a p
sort2 a p
interchange a p

would have to be changed to a functional form. This aiain

points out the necessity to pass A to the f.urtion as an

input Earametaer. The three functions could then be applied

in the form

interchange (sort2" sort3 (A, a, p) , a, p 3, a, pi

Of course, the functions sort3, sort2, and intErchan.e all

must have an array included as an input/output parameter of

their respective definitions.

All of this leads us to the unsettling iad somewhat

startling realization that Burge's elegant solution is

recursive, easy to understand, but not functional! As I hope

you will agree by my discussion, it would not be difficult

to develop a purely functional program from Sirge's solu-

tion, but as it stands, it is not suitable Eor parallel

processing.

This leads me to a discussion of the dangers of using

"pseudo-functional" programs.

''We could define a function exit which returns the
sorted array.
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G. POTENTIAL PITFALLS

When locking for an "elegant" solution, one can consult
with a progrimmer who is expert in the art oE functional

programming, or consult the literature for a pcogram which

has already been developed. In the former case, it is

important to ensure that the programmer knows that the

program is to be used on a multipracessor, and hence must be

functionally pure. In the case of a literature search, one

must he a bit more careful.

Each program which is taken "off the shelf" must bv

scrutinized to ensure that it doesn't have ant assi3nnent

statements (eKplicit or hidden). It mist have no sequential

segments, and must have all "variables" accouated for in

parameters. lany "functional" programs found in the litera-

ture will appear to be functionally pure. Nevertheless, it

is important to go through the code symool oy symbol to

ensure that the properties of referential transparency an!

independence of evaluation order independence are being

preserved. Note that the code of any function that is

called, hut not explicitly defined, must also be scrutinizei

so that we can be certain that the function is based on pure

expr essions.

One must also be careful about using languages which are

sometimes thought cf as "applicative" within computer

science, but which are far from "pure" in the functional

sense. Perhaps the best example of this is LISP. There are

versions of LISP which are suitable for concurrent

processing, such as concurrent LISP [Ref. 32]. The limita-

tions of this version of LISP are the same as the limita-

tions of concurrent versions of other languages with
0 imperative features. Mechanisms are created to allow the

programmer to label critical sections, so that side effects

will not appear during the concurrent processing. Note that
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the burden is once again placed on the programaer, making

the process prone to error and diminishing the chances that

concurrency will be maximized. Figure 4. 16 is i LISP solu-

tion to the breadth first search [ef. 27: p.146].

(DEFUN BiLEADTH (START FINISH)
(PEOG (RUEUE EXPANSION)

SETQ QUEUE (LIST (LIST START)))
TRYAGAIN
(COND (NULL QUEUE) (RETUPN NILLi

((EQUAL FINISH (CAAF QUEJE ),1
E TUN RVERSE (CAR QJEU )

SETQ EXAANSILCM RPAND (CAR QrJFUE))) I
(SETQ QUEUE (CDR QtEUI)) .
(SETQ EUEN(APPEND J.E - EXPAN3LON))
(GO N)MAG ))

Figure 4.16 Breadth First Search in LrSP

Note that every SETQ is equivailent to an assignaent

statement. So although LISP has the potential t: be used as

a purely funztional language, it is rarely used in that

form. it looks f unctional, but is really no more functional

than an ALGOL or Pascal program.

The bottom line when it comes to using functional

programs to enhance concurrent processing is: be certain

that the Proram that You are cajlin "functioial" can be

;_duc_d to P.-e e sejons.
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II

:1

V. ANALYSIS AND CONCLUSIONS

A. OVERVIEW

The assigament statement is the von Neumana bottleneck

of programming languages. When describing languages which

are based on pure expressions, Friedman and Wi.e point out

that one of their most notable features is that they do not

have "destructive" assignment statements, and a:e therefore

free of side effects [Bef. 33]. This is the way ir. wLicl

referential transparency and independence of evaluation

order are achieved. Cnce these attributes are :resent in

programming language, its expressive power (in terms of its

ability to be processed in parallel) is no longer

constrained. Many languages have "concurrent versions"

which allow them to be processed on parallel .achires.

Unifortunately, these languages put the burden on the

programmer to identify the critical sections. This

increases the chances of programming error. 3uch errors

would be manifested in side effects, and could go undetected

until their potentially disastrous effects are felt.

Functional languages do not have critical sections, and

hence can take advantage of the hundreds or even thousands

of processors that are bezzoming available becaise of VLSI

technology.

B. MECHANICAL SOLUTIONS

When technological breakthroughs are achieved in

computer science, it seems that there is a )ncern among

those who alr.ady have large investments that their existing

systems will become obsolete, and thus practically worthless

overnight. Even in cases where hardware costs are reasonable
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enough to be enticing, the costs of adapting existing soft-

ware to the new machinery is frequently staggecing, if not

cost prohibitive. The mechanical means of converting impera-

tive programs into functional ones is very attractive in

this light. It is a simple process wnich produces programs

which have all the properties of pure expressions. This

means that all variable/value bindings are established as

parameter/argument bindings in function linkages, and are

therefol-e not subject to change duzing their ill-time. -his

presents an o:vious opportunity for paralielism 3ince subx-

pressions are independent of one another and tierefore can

be evaluated in any order, or simultaneously [Ref. 33].

In addition to creating code which can be processed or. a

parallel machine, the mechanical traasformation ilso results

in code which is easier to understand thin imperative code.

This is Lecause functions are designed to be defined in

terms of othec functions. This leids to a "layecing" effect

which removes the programmer from much of th_ unnecessary

detail of the program.

A functional program may be viewed as a set 3f matheiat-

ical equations which specify the solution [Ref. 34]. Even

the "mechanically produced" functional program dill be more

suited to a proof of correctness. If an imperative pro gram

is at all complicated, it will be extremely difficulty to

prove it correct. Thus this "by-product" of the transforma-

tion process is a very useful one.

C. ELEGANT SOLUTIONS

Despite the attractiveness of the mechaiical transforma-

tion process, I am not recommending that it be used unless

there is already a program in use which meets or exceeds the

expectations being placed on it. In other cases, a new

program should be designed, and a functional aprcoach should
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be used throughout its life cycle. In this way, programs can

be tailored far the exact specifications for which they are

intended, although the designers should take precautions to

ensure that they can be extended to meet future cecuiremer.ts

that arise during their life cycles.

When ele1ant solutions are used, special care must be

taken to scratinize the code to ensure that it can be

reduced to pure expressions. One must be especially careful

when using algorithms from the literature that are tagged
"functional." There are many languages which appear to he
functional which have "hiiden" assignment statements. !he

presence of these will adulterate the program, and render it

unsuitanle for parallel processing as we have :een

discussing it.

D. EFFICIENCY

Recursive functions usually result in an exponential

growth in parllelism [Ref. 35]. Functional no:atio. natu-

rally lends itself to recursive functions, so there will

likely be a great many subexpressions which can :e evaluated

simultaneously. On a uniprocessor, a functional program will

run much more slowly, because of all the procedure calls.

Traditionally, proponents of functional programming have

beer, willing to trade inefficiencies in their programs for

greater understandability and provability. On multiproces-

sors, the inefficiencies caused by the procedure calls are

not significant compared to the speed gained :y parallel

processing. The result is that, in a multiprocessing envi-

ronment, functional programs are not only more understand-

able, but they run faster, too. Since functionil languages
exploit the power of multiprocessors, we can enjoy the best

of both worlds!
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E. A SURPRISING OUTCOME

When I started to learn the mechanical tcinsformation

process, I was convinced that the resulting cole would be so

complicated that it would be impossible for people to under-

stand. Nevertheless, I reasoned that since it would still

ha:e all the properties of pure expressions, th: code would

he quite suitable for processing on a parallel machine. The

only drawback, I supposed, would oe that it woald be diffi-

cult to maintain.

The first time I converted the Pascai versLon of Seli

sort into a functional notation, I was met with cole that

was indeed obscure. The reason is taat I failed to take

advantage of the property of referential transparency when

defining a fanction in a loop.1 7 When the substitution is

made, this forces the program to a higher level of ahstrac-

tion, and tremendously increases the understa~adatility of

the program. Thus when a comparison is made between the

mechanical solution [Figure 4.11] ani te elegint solution

[Figure 4.12], there isn't a great deal of difference in

their readability. This makes the mechanical solution ever.

more attractive.

F. OTHER ISSUES

The developers of VAL concluded that the most serious

weakness of their language was an omission of general input/

output facilities [Ref. 29: p.67]. Such a deficiency is

common among functional programming languages. As is the

case of VAL, the notation I have been discussing really only

permits the most primitive I/O, namely, batch I/D. No I/O is

actually done within the functional programs themselves.

"?See steps 14, 17, and 19 in TRANSFORMATION OF SHELL
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There are techniques for extending f inctional notation to

include 1/O, out they are beyond the scope of this paper.

Finally, note that I have made no reference to a garbage

collection mezhanism. In functional programs, structures are

not overwritten. Recall that the update function creates a

new array with the changed element. rhe "old" irray is not

overwritten. rhis process takes a great deal of nemory. Thus

a good garbage collector is a necessity. It must detect wr.er

structures are no longer going to be used in tne pro-gram,

and reclaim the memory they were using. Such necnanisms are

available tolay, and thus the problem of making memorv

available for functional programs loes not pose great

difficulty.

G. IN A NUTSHELL

As long as the assignment statement is present in

programming languages, we will not be able to tace advantage

of the potential processing power of the new michines that

are being developed. Functional programming languages do not

use assignments statements, and thus have the properties of

referential transparency and independence oE evaluation

order. In addition, functional programs are fcae from side

effects, lend themselves to algebraic manipulation, and are

much easier to prove correct than are imperative programs.

There are many imperative programs which have added

features to enhance concurrent processing, through the iden-

tification of critical sections. This places aa additional

burden on the programmer, and increases the licelihood for

errors in the programs. The concurrency mechanism of FPI.s is

built into the language, and thus the need for the

programmer to identify critical sections is eliminated.

Functional programming languages have long been

applauded for their understandability. The ability of FPLs

0
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to be processed in parallel Las been known for some time,

but only with the advent of VLSI technology, ani the devel-

opment of machines containing a large number of processors

is the usefulness of this property really becoming apparent.

Functional programming languages have the potential to

completely harness the power of this new generation of

machine.

Imperativa programs can be mechanically transformed into

functional programs. Since this can be done auicklv an1

inexpensively, it is an attractive method for tiose whc arc

considering investing in a parallel processing environment,

tut already aave a large amount oi software wcitter: i:; a:"

imperative language.
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